Number of people who drowned by falling into a pool
correlates with
Films Nicolas Cage appeared in

Letters in Winning Word of Scripps National Spelling Bee
correlates with
Number of people killed by venomous spiders

CAUSALITY

PART I - CONFOUNDING

André dos Santos, Ph.D.

The Monty Hall problem

"Let's make a deal"

The Monty Hall problem

"Let's make a deal"

The Monty Hall problem

"Let's make a deal"

The Monty Hall problem

"Let's make a deal"

The Ladder of Causation

DOING
INTERVENTION

IMAGINING
COUNTERFACTUALS

Confounding

- Not a statistical notion
- $\quad P(Y \mid X) \neq P(Y \mid d o(X))$
- Discrepancy between what we want to a asses (the causal effect) and what we actually do assess using statistical method

Backdoor path is any path from X to

 Y that starts with an arrow pointing into X.
$\mathbf{X} \leftarrow \mathbf{Z} \rightarrow \mathbf{Y}$

X and Y will be deconfounded if we block every backdoor path.

Backdoor path is any path from X to

 Y that starts with an arrow pointing into X.
$\mathbf{X} \in \mathbf{Z} \rightarrow \mathbf{Y}$

X and Y will be deconfounded if we block every backdoor path.

Flow of Information In Causal Graph

CHAIN

FORK

COLLIDER

Flow of Information In Causal Graph

CHAIN

Flow of Information In Causal Graph

Flow of Information In Causal Graph

Backdoor path is any path from X to

 Y that starts with an arrow pointing into X.
$X \in Z \rightarrow Y$

X and Y will be deconfounded if we block every backdoor path.

- No backdoor

- One backdoor path
- $X \leftarrow A \rightarrow B \leftarrow D \rightarrow E \rightarrow Y$

- One backdoor path
- $X \leftarrow A \rightarrow B \leftarrow D \rightarrow E \rightarrow Y$
- Control \varnothing

- One backdoor path
- $X \leftarrow B \rightarrow Y$
- Control B

- One backdoor path
- $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$

- One backdoor path
- $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
- Control \varnothing

- One backdoor path

$$
\text { - } X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y
$$

- Control \varnothing

A := Societal norms

B := Seat belt usage
C := Safety and health related measures

- Two backdoor paths
- $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$

- Two backdoor paths
- $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$

- Two backdoor paths
- $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
- $X \leftarrow B \leftarrow C \rightarrow Y$
- Control C

A := Societal norms
B := Seat belt usage
C := Safety and health related measures
D := Parental asthma
$\mathrm{E}:=$ Chronic bronchitis
F:= Sex
$\mathrm{G}:=$ Socioeconomic status
X := Smoking
$\mathrm{Y}:=$ Lung disease

- Control E, F, and G

A := Societal norms

B := Seat belt usage
C := Safety and health related measures
D := Parental asthma
$\mathrm{E}:=$ Chronic bronchitis
F:= Sex
$\mathrm{G}:=$ Socioeconomic status
X := Smoking
Y := Lung disease

The Monty Hall problem

"Let's make a deal"

The Monty Hall problem

Chosen

Door 1 Door 2 Door $\left.3 \begin{array}{c}\text { Outcome if } \\ \text { switch }\end{array} \quad \begin{array}{c}\text { Outcome } \\ \text { if stay }\end{array}\right]$

The Monty Hall problem

Second Door Opened

The Monty Hall problem 2.0

"Let's fake a deal"

The Monty Hall problem 2.0

"Let's fake a deal"

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	2	Lose	Win
1	2	3	Lose	Lose
1	2	3	Win	Lose
1	3		Win	Lose
1	2	Lose	Lose	

The Monty Hall problem 2.0

"Let's fake a deal"

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	3	Lose	Lose
1	2	2	Win	Lose
1	3		Win	Lose
1	3	Lose	Lose	

The Monty Hall problem 2.0

"Let's fake a deal"

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	2	Lose	Lose
1	2	2	Win	Lose
1	3	3	Win	Lose
1	3	Lose	Lose	

The Monty Hall problem

Second Door Opened

2 coins and 1 date

Berkson's Paradox

Write down the results only when at least one of them comes up heads

2 coins and 1 date

Berkson's Paradox

Coin 1	Coin 2	Ω
Heads	Heads	25
Heads	Tails	23
Tails	Heads	27

2 coins and 1 date

Berkson's Paradox

First coin toss

Coin 1 Coin 2Ω

Heads	Heads	25
Heads	Tails	23
Tails	Heads	27
Tails	Tails	\times

2 coins and 1 date

"How Not to Be Wrong" by Jordan Ellenberg

Attractiveness
Nice Personality

Dating Material

2 coins and 1 date
 "How Not to Be Wrong" by Jordan Ellenberg

Attractiveness

2 coins and 1 date
 "How Not to Be Wrong" by Jordan Ellenberg

Attractiveness

Dating Material

CAUSALITY

PART I - CONFOUNDING

André dos Santos, Ph.D.

